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Lecture 3: Evolution equations and shower Monte Carlos
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• Quarks and gluons
• Solution by moments

• Sudakov form factor

• Infrared cutoff

• Monte Carlo method

• Soft gluon emission

• Angular ordering
• Coherent branching
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DGLAP equation

• Consider enhancement of higher-order contributions due to multiple small-angle parton emission,
for example in deep inelastic scattering (DIS)

• Incoming quark from target hadron, initially with low virtual mass-squared −t0 and carrying
a fraction x0 of hadron’s momentum, moves to more virtual masses and lower momentum
fractions by successive small-angle emissions, and is finally struck by photon of virtual mass-

squared q2 = −Q2.

• Cross section will depend on Q2 and on momentum fraction distribution of partons seen by

virtual photon at this scale, D(x, Q2).

• To derive evolution equation for Q2-dependence of D(x, Q2), first introduce pictorial
representation of evolution, also useful later for Monte Carlo simulation.
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• Represent sequence of branchings by path in (t, x)-space. Each branching is a step downwards
in x, at a value of t equal to (minus) the virtual mass-squared after the branching.

• At t = t0, paths have distribution of starting points D(x0, t0) characteristic of target hadron
at that scale. Then distribution D(x, t) of partons at scale t is just the x-distribution of paths
at that scale.

• Consider change in the parton distribution D(x, t) when t is increased to t+δt. This is number
of paths arriving in element (δt, δx) minus number leaving that element, divided by δx.
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• Number arriving is branching probability times parton density integrated over all higher momenta
x′ = x/z,

δD in(x, t) =
δt

t

Z 1

x
dx′ dz

αS
2π

P̂ (z)D(x′, t) δ(x − zx′)

=
δt

t

Z 1

0

dz

z

αS
2π

P̂ (z)D(x/z, t)

• For the number leaving element, must integrate over lower momenta x′ = zx:

δD out(x, t) =
δt

t
D(x, t)

Z x

0
dx′ dz

αS
2π

P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

Z 1

0
dz

αS
2π

P̂ (z)

• Change in population of element is

δD(x, t) = δD in − δD out

=
δt

t

Z 1

0
dz

αS
2π

P̂ (z)

»
1

z
D(x/z, t) − D(x, t)

–
.
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• Introduce plus-prescription with definition

Z 1

0
dx f(x) g(x)+ =

Z 1

0
dx [f(x) − f(1)] g(x) .

Using this we can define regularized splitting function

P (z) = P̂ (z)+ ,

and obtain Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation:

t
∂

∂t
D(x, t) =

Z 1

x

dz

z

αS
2π

P (z)D(x/z, t) .

• Here D(x, t) represents parton momentum fraction distribution inside incoming hadron probed
at scale t. In timelike branching, it represents instead hadron momentum fraction distribution
produced by an outgoing parton. Boundary conditions and direction of evolution are different,
but evolution equation remains the same.
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Quarks and gluons

• For several different types of partons, must take into account different processes by which parton
of type i can enter or leave the element (δt, δx). This leads to coupled DGLAP evolution
equations of form

t
∂

∂t
Di(x, t) =

X
j

Z 1

x

dz

z

αS
2π

Pij(z)Dj(x/z, t) .

• Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave via q → qg.
Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

 
1 + z2

1 − z

!
+

Pqg(z) = P̂qg(z) = TR [z2 + (1 − z)2]

• Gluon can arrive either from g → gg (2 contributions) or from q → qg (or q̄ → q̄g). Thus
number arriving is
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δDg, in =
δt

t

Z 1

0
dz

αS
2π


P̂gg(z)

»
Dg(x/z, t)

z
+

Dg(x/(1 − z), t)

1 − z

–

+
P̂qq(z)

1 − z

»
Dq

„
x

1 − z
, t

«
+ Dq̄

„
x

1 − z
, t

«–ff

=
δt

t

Z 1

0

dz

z

αS
2π

n
2P̂gg(z)Dg

„
x

z
, t

«

+ P̂qq(1 − z)

»
Dq

„
x

z
, t

«
+ Dq̄

„
x

z
, t

«–o
,

• Gluon can leave by splitting into either gg or qq̄, so that

δDg, out =
δt

t
Dg(x, t)

Z 1

0
dz

αS
2π

h
P̂gg(z) + NfP̂qg(z) dz

i
.

• After some manipulation we find

Pgg(z) = 2CA

»„
z

1 − z
+

1

2
z(1 − z)

«
+

+
1 − z

z
+

1

2
z(1 − z)

–
− 2

3
NfTR δ(1 − z) ,
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Pgq(z) = Pgq̄(z) = P̂qq(1 − z) = CF
1 + (1 − z)2

z
.

• Using definition of the plus-prescription, can check that„
z

1 − z
+

1

2
z(1 − z)

«
+

=
z

(1 − z)+
+

1

2
z(1 − z) +

11

12
δ(1 − z)

 
1 + z2

1 − z

!
+

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z) ,

so Pqq and Pgg can be written in more common forms

Pqq(z) = CF

"
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

#

Pgg(z) = 2CA

"
z

(1 − z)+
+

1 − z

z
+ z(1 − z)

#
+

1

6
(11CA − 4NfTR) δ(1 − z) .
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Solution by moments

• Given Di(x, t) at some scale t = t0, factorized structure of DGLAP equation means we can
compute its form at any other scale.

• One strategy for doing this is to take moments (Mellin transforms) with respect to x:

D̃i(N, t) =

Z 1

0
dx xN−1 Di(x, t) .

Inverse Mellin transform is

Di(x, t) =
1

2πi

Z
C

dN x−N D̃i(N, t) ,

where contour C is parallel to imaginary axis to right of all singularities of integrand.

• After Mellin transformation, convolution in DGLAP equation becomes simply a product:

t
∂

∂t
D̃i(x, t) =

X
j

γij(N, αS)D̃j(N, t)

where moments of splitting functions give PT expansion of anomalous dimensions γij :

γij(N, αS) =

∞X
n=0

γ
(n)
ij

(N)

„
αS
2π

«n+1
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γ
(0)
ij

(N) = P̃ij(N) =

Z 1

0
dz z

N−1
Pij(z)

• From above expressions for Pij(z) we find

γ
(0)
qq (N) = CF

»
− 1

2
+

1

N(N + 1)
− 2

NX
k=2

1

k

–

γ
(0)
qg (N) = TR

»
(2 + N + N2)

N(N + 1)(N + 2)

–

γ
(0)
gq (N) = CF

»
(2 + N + N2)

N(N2 − 1)

–

γ
(0)
gg (N) = 2CA

»
− 1

12
+

1

N(N − 1)
+

1

(N + 1)(N + 2)
−

NX
k=2

1

k

–
− 2

3
NfTR .
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Scaling violation

• Consider combination of parton distributions which is flavour non-singlet, e.g. DV = Dqi−Dq̄i
or Dqi − Dqj . Then mixing with the flavour-singlet gluons drops out and solution for fixed

αS is

D̃V (N, t) = D̃V (N, t0)

„
t

t0

«γqq(N,αS)
,

• We see that dimensionless function DV , instead of being scale-independent function of x as
expected from dimensional analysis, has scaling violation: its moments vary like powers of scale
t (hence the name anomalous dimensions).

• For running coupling αS(t), scaling violation is power-behaved in ln t rather than t. Using

leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

 
αS(t0)

αS(t)

!dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

• Flavour-singlet distribution and quantitative predictions will be discussed later.
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Combined data on F2 proton

HERA F2
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• Now dqq(1) = 0 and dqq(N) < 0 for N ≥ 2. Thus
as t increases V decreases at large x and increases at
small x. Physically, this is due to increase in the phase
space for gluon emission by quarks as t increases, leading
to loss of momentum. This is clearly visible in data:
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Flavour singlet combination

• For flavour-singlet combination, define

Σ =
X
i

(qi + q̄i) .

Then we obtain

t
∂Σ

∂t
=

αS(t)

2π

h
Pqq ⊗ Σ + 2NfPqg ⊗ g

i

t
∂g

∂t
=

αS(t)

2π

ˆ
Pgq ⊗ Σ + Pgg ⊗ g

˜
.

• Thus flavour-singlet quark distribution Σ mixes with gluon distribution g: evolution equation for
moments has matrix form

t
∂

∂t

„
Σ̃
g̃

«
=

„
γqq 2Nfγqg

γgq γgg

«„
Σ̃
g̃

«
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Form of anomalous dimension matrix as a function of N .

• Rapid growth at small N in gq and gg elements at lowest order

• ln N behaviour at large N in qq and gg elements

• NNLO now known
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• Singlet anomalous dimension matrix has two real eigenvalues γ± given by

γ± =
1

2
[γgg + γqq ±

q
(γgg − γqq)2 + 8Nfγgqγqg] .

• Expressing Σ̃ and g̃ as linear combinations of eigenvectors Σ̃+ and Σ̃−, we find they evolve as
superpositions of terms of above form with γ± in place of γqq.
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Solution of DGLAP matrix equation

The reduced DGLAP equation can be written as

d

du

„
Σ̃(u)
g̃(u)

«
= P

„
Σ̃(u)
g̃(u)

«

where u = 1
2πb

ln
αS(µ2

0)

αS(µ2)

• Define projection operators, M±

M+ =
1

γ+ − γ−
h

+ P − γ−1
i
, M− =

1

γ+ − γ−
h
− P + γ+1

i
,

where M±M± = M±, M+M− = M−M+ = 0, M+ + M− = 1 and

P = γ+M+ + γ−M−

• The solution is„
Σ̃(u)
g̃(u)

«
=
h
M+ exp(γ+u) + M− exp(γ−u)

i„
Σ̃(0)
g̃(0)

«
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Momentum partition vs Q2

• For second moment

O
+

(2, t) = Σ(2, t) + g(2, t) with eigenvalue 0 ,

O
−

(2, t) = Σ(2, t) −
nf

4CF
g(2, t) with eigenvalue −

„
4

3
CF +

nf

3

«
.

O+, corresponds to the total momentum carried by the quarks and gluons, is independent of

t. The eigenvector O− vanishes in the limit t → ∞:

O
−

(2, t) =

 
αS(t0)

αS(t)

!d−(2)

→ 0, with d
−

(2) =
γ−(2)

2πb
= −

(43CF + 1
3nf )

2πb
,

so that asymptotically we have

Σ(2, t)

g(2, t)
→

nf

4CF
=

3

16
nf .
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Asymptotia is approached slowly

The momentum fractions fq and fg in the µ2 = t → ∞ limit are therefore

fq =
3nf

16 + 3nf
, fg =

16

16 + 3nf
.

• Scaling violation depends logarithmically on Q2.

• Large variation at low Q2
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Gluon distribution

• Large number of gluons per unit rapidity

• The LHC is a copious source of gluons
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Sudakov form factor

• DGLAP equations convenient for evolution of parton distributions. To study structure of final
states, slightly different form is useful. Consider again simplified treatment with only one type
of branching. Introduce Sudakov form factor:

∆(t) ≡ exp

"
−
Z t

t0

dt′
t′
Z

dz
αS
2π

P̂ (z)

#
,

Then

t
∂

∂t
D(x, t) =

Z
dz

z

αS
2π

P̂ (z)D(x/z, t) +
D(x, t)

∆(t)
t

∂

∂t
∆(t) ,

t
∂

∂t

„
D

∆

«
=

1

∆

Z
dz

z

αS
2π

P̂ (z)D(x/z, t) .

• This is similar to DGLAP, except D replaced by D/∆ and regularized splitting function P
replaced by unregularized P̂ . Integrating,

D(x, t) = ∆(t)D(x, t0)

+

Z t

t0

dt′
t′

∆(t)

∆(t′)
Z

dz

z

αS
2π

P̂ (z)D(x/z, t′) .
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• This has simple interpretation. First term is contribution from paths that do not branch between
scales t0 and t. Thus Sudakov form factor ∆(t) is probability of evolving from t0 to t without

branching. Second term is contribution from paths which have their last branching at scale t′.
Factor of ∆(t)/∆(t′) is probability of evolving from t′ to t without branching.

• Generalization to several species of partons straightforward. Species i has Sudakov form factor

∆i(t) ≡ exp

2
4−X

j

Z t

t0

dt′
t′
Z

dz
αS
2π

P̂ji(z)

3
5 ,

which is probability of it evolving from t0 to t without branching. Then

t
∂

∂t

„
Di
∆i

«
=

1

∆i

X
j

Z
dz

z

αS
2π

P̂ij(z)Dj(x/z, t) .
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Infrared cutoff

• In DGLAP equation, infrared singularities of splitting functions at z = 1 are regularized
by plus-prescription. However, in above form we must introduce an explicit infrared cutoff,
z < 1 − ε(t). Branchings with z above this range are unresolvable: emitted parton is too soft
to detect. Sudakov form factor with this cutoff is probability of evolving from t0 to t without
any resolvable branching.

• Sudakov form factor sums enhanced virtual (parton loop) as well as real (parton emission)
contributions. No-branching probability is the sum of virtual and unresolvable real contributions:
both are divergent but their sum is finite.

• Infrared cutoff ε(t) depends on what we classify as resolvable emission. For timelike branching,
natural resolution limit is given by cutoff on parton virtual mass-squared, t > t0. When parton
energies are much larger than virtual masses, transverse momentum in a → bc is

p
2
T = z(1 − z)p

2
a − (1 − z)p

2
b − zp

2
c > 0 .

Hence for p2
a = t and p2

b, p2
c > t0 we require

z(1 − z) > t0/t ,

that is,

z, 1 − z > ε(t) =
1

2
− 1

2

q
1 − 4t0/t � t0/t .
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• Quark Sudakov form factor is then

∆q(t) � exp

2
4−Z t

2t0

dt′
t′
Z 1−t0/t′

t0/t′
dz

αS
2π

P̂qq(z)

3
5 .

• Careful treatment of running coupling suggests its argument should be p2
T ∼ z(1− z)t′. Then

at large t

∆q(t) ∼
 

αS(t)

αS(t0)

!p ln t

,

(p = a constant), which tends to zero faster than any negative power of t.

• Infrared cutoff discussed here follows from kinematics. We shall see later that QCD dynamics
effectively reduces phase space for parton branching, leading to a more restrictive effective cutoff.
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Monte Carlo method

• Formulation in terms of Sudakov form factor is well suited to computer implementation, and is
basis of “parton shower” Monte Carlo programs.

• Monte Carlo branching algorithm operates as follows: given virtual mass scale and momentum
fraction (t1, x1) after some step of the evolution, or as initial conditions, it generates values
(t2, x2) after the next step.

• Since probability of evolving from t1 to t2 without branching is ∆(t2)/∆(t1), t2 can be
generated with the correct distribution by solving

∆(t2)

∆(t1)
= R

where R is random number (uniform on [0, 1]).
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• If t2 is higher than hard process scale Q2, this means branching has finished.
• Otherwise, generate z = x2/x1 with distribution proportional to (αS/2π)P (z), where

P (z) is appropriate splitting function, by solving

Z x2/x1

ε
dz

αS
2π

P (z) = R′ Z 1−ε

ε
dz

αS
2π

P (z)

where R′ is another random number and ε is cutoff for resolvable branching.

• In DIS, (ti, xi) values generated define virtual masses and momentum fractions of exchanged
quark, from which momenta of emitted gluons can be computed. Azimuthal emission angles are
then generated uniformly in the range [0, 2π]. More generally, e.g. when exchanged parton is a
gluon, azimuths must be generated with polarization angular correlations discussed earlier.

• Each emitted (timelike) parton can itself branch. In that case t evolves downwards towards

cutoff value t0, rather than upwards towards hard process scale Q2. Probability of evolving
downwards without branching between t1 and t2 is now given by

∆(t1)

∆(t2)
= R .

Thus branching stops when R < ∆(t1).
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• Due to successive branching, parton cascade or shower develops. Each outgoing line is source of
new cascade, until all outgoing lines have stopped branching. At this stage, which depends on
cutoff scale t0, outgoing partons have to be converted into hadrons via a hadronization model.
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Soft gluon emission

• Parton branching formalism discussed so far takes account of collinear enhancements to all orders
in PT. There are also soft enhancements: When external line with momentum p and mass m
(not necessarily small) emits gluon with momentum q, propagator factor is

1

(p ± q)2 − m2
=

±1

2p · q
=

±1

2ωE(1 − v cos θ)

where ω is emitted gluon energy, E and v are energy and velocity of parton emitting it, and θ
is angle of emission. This diverges as ω → 0, for any velocity and emission angle.

• Including numerator, soft gluon emission gives a colour factor times universal, spin-independent
factor in amplitude

F soft =
p · ε

p · q

where ε is polarization of emitted gluon. For example, emission from quark gives numerator
factor N · ε, where

Nµ = (	p + 	q + m)γµu(p) ω → 0−→ (γνγµpν + γµm)u(p)

= (2p
µ − γ

µ	p + γ
µ

m)u(p) = 2p
µ

u(p) .

(using Dirac equation for on-mass-shell spinor u(p)).
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• Universal factor F soft coincides with classical eikonal formula for radiation from current pµ,
valid in long-wavelength limit.

• No soft enhancement of radiation from off-mass-shell internal lines, since associated denominator
factor (p + q)2 − m2 → p2 − m2 	= 0 as ω → 0.

• Enhancement factor in amplitude for each external line implies cross section enhancement is sum
over all pairs of external lines {i, j}:

dσn+1 = dσn
dω

ω

dΩ

2π

αS
2π

X
i,j

CijWij

where dΩ is element of solid angle for emitted gluon, Cij is a colour factor, and radiation
function Wij is given by

Wij =
ω2pi · pj

pi · q pj · q
=

1 − vivj cos θij

(1 − vi cos θiq)(1 − vj cos θjq)
.

Colour-weighted sum of radiation functions CijWij is antenna pattern of hard process.
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• Radiation function can be separated into two parts containing collinear singularities along lines i

and j. Consider for simplicity massless particles, vi,j = 1. Then Wij = Wi
ij + W

j
ij

where

W
i
ij =

1

2

 
Wij +

1

1 − cos θiq
− 1

1 − cos θjq

!
.

• This function has remarkable property of angular ordering. Write angular integration in polar
coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq. Performing azimuthal integration, we
find Z 2π

0

dφiq

2π
W

i
ij =

1

1 − cos θiq
if θiq < θij , otherwise 0.

i

j

Thus, after azimuthal averaging, contribution from

Wi
ij is confined to cone, centred on direction of i,

extending in angle to direction of j. Similarly, W
j
ij

,

averaged over φjq , is confined to cone centred on
line j extending to direction of i.
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Angular ordering

• To prove angular ordering property, write

1 − cos θjq = a − b cos φiq

where
a = 1 − cos θij cos θiq , b = sin θij sin θiq .

Defining z = exp(iφiq), we have

I
i
ij ≡

Z 2π

0

dφiq

2π

1

1 − cos θjq
=

1

iπb

I
dz

(z+ − z)(z − z−)

where z-integration contour the unit circle and

z± =
a

b
±
s

a2

b2
− 1 .

Now only pole at z = z− can lie inside unit circle, so

I
i
ij =

s
1

a2 − b2
=

1

| cos θiq − cos θij|
.
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Hence Z 2π

0

dφiq

2π
W

i
ij =

1

2(1 − cos θiq)
[1 + (cos θiq − cos θij)I

i
ij]

=
1

1 − cos θiq
if θiq < θij , otherwise 0.

• Angular ordering is coherence effect common to all gauge theories. In QED it causes Chudakov

effect – suppression of soft bremsstrahlung from e+e− pairs, which has simple explanation in
old-fashioned (time-ordered) perturbation theory.

• Consider emission of soft photon at angle θ from electron in pair with opening angle
θee < θ. For simplicity assume θee, θ 
 1.

– R.K.Ellis, Maria Laach, September 2004 – 30



• Transverse momentum of photon is kT ∼ zpθ and energy imbalance at e → eγ vertex is

∆E ∼ k
2
T /zp ∼ zpθ

2
.

• Time available for emission is ∆t ∼ 1/∆E. In this time transverse separation of pair will
be ∆b ∼ θee∆t.

• For non-negligible probability of emission, photon must resolve this transverse separation of
pair, so

∆b > λ/θ ∼ (zpθ)−1

where λ is photon wavelength.
• This implies that

θee(zpθ2)−1 > (zpθ)−1 ,

and hence θee > θ. Thus soft photon emission is suppressed at angles larger than opening
angle of pair, which is angular ordering.

• Photons at larger angles cannot resolve electron and positron charges separately – they see
only total charge of pair, which is zero, implying no emission.

• More generally, if i and j come from branching of parton k, with (colour) charge Qk =
Qi + Qk, then radiation outside angular-ordered cones is emitted coherently by i and j and
can be treated as coming directly from (colour) charge of k.
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Coherent branching

• Angular ordering provides basis for coherent parton branching formalism, which includes leading
soft gluon enhancements to all orders.

• In place of virtual mass-squared variable t in earlier treatment, use angular variable

ζ =
pb · pc

Eb Ec
� 1 − cos θ

as evolution variable for branching a → bc, and impose angular ordering ζ′ < ζ for successive
branchings. Iterative formula for n-parton emission becomes

dσn+1 = dσn
dζ

ζ
dz

αS
2π

P̂ba(z) .

• In place of virtual mass-squared cutoff t0, must use angular cutoff ζ0 for coherent branching.
This is to some extent arbitrary, depending on how we classify emission as unresolvable. Simplest
choice is

ζ0 = t0/E
2

for parton of energy E.
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• For radiation from particle i with finite mass-squared t0, radiation function becomes

ω
2

0
@ pi · pj

pi · q pj · q
− p2

i

(pi · q)2

1
A � 1

ζ

„
1 − t0

E2ζ

«
,

so angular distribution of radiation is cut off at ζ = t0/E2. Thus t0 can still be interpreted
as minimum virtual mass-squared.

• With this cutoff, most convenient definition of evolution variable is not ζ itself but rather

t̃ = E2ζ ≥ t0 .

Angular ordering condition ζb, ζc < ζa for timelike branching a → bc (a outgoing) becomes

t̃b < z2t̃ , t̃c < (1 − z)2t̃

where t̃ = t̃a and z = Eb/Ea. Thus cutoff on z becomesq
t0/t̃ < z < 1 −

q
t0/t̃ .

• Neglecting masses of b and c, virtual mass-squared of a and transverse momentum of branching
are

t = z(1 − z)t̃ , p
2
t = z

2
(1 − z)

2
t̃ .
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Thus for coherent branching Sudakov form factor of quark becomes

∆̃q(t̃) = exp

2
64−Z t̃

4t0

dt′
t′
Z 1−

q
t0/t′q

t0/t′
dz

2π
αS(z2(1 − z)2t′)P̂qq(z)

3
75

At large t̃ this falls more slowly than form factor without coherence, due to the suppression of
soft gluon emission by angular ordering.
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• Note that for spacelike branching a → bc (a incoming, b spacelike), angular ordering condition
is

����
����
����
����

����
����
����
�������� θθ

θ

ba

c

a b

c

θb > θa > θc ,

and so for z = Eb/Ea we now have

t̃b > z2t̃a , t̃c < (1 − z)2t̃a .

• Thus we can have either t̃b > t̃a or t̃b < t̃a, especially at small z — spacelike branching
becomes disordered at small x.
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Recap

• Parton evolution can be represented as a branching process from higher values of x

• DGLAP equation predicts growth at small x and shrinkage at large x with increasing Q2.

• The Sudakov form factor ∆(t) is the probability of evolving from t0 to t without branching.

• branching from (t1, x1) to (t2, x2) with the right probability can be performed with by
choosing three random numbers, (t, x, φ)

• Branching is subject to an angular ordering constraint. Large angle emission is dynamically
suppressed.
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